Mechanical Links between Erosion and Metamorphism in Nanga Parbat, Pakistan Himalaya
نویسندگان
چکیده
The mechanics and petrological signature of a collisional mountain belt can be significantly influenced by topographic and erosional effects at the scale of large river gorges. The geomorphic influence on crustal scale processes arises from the effects of both stress localization due to existing topography, and also erosional removal of advected crustal mass. The shear stress concentration and normal stress amplification due to topographic gradients and loads divert strain away from existing topographic loads, while concentrating strain into topographic gaps. Efficient erosional removal of material within topographic gaps with widths of at least the thickness of the brittle crustal layer results in differential advection of crustal material. Concentrated exhumation within a gap leads to thermal thinning of the upper brittle layer of the crust, removing the highest strength part of the continental crust and significantly reducing the integrated crustal strength beneath the topographic gap. A rheological weak spot, triggered by efficient incision, grows in intensity as strain becomes increasingly concentrated within the weak region. The growth of extreme topography of an isolated massif requires that the process of creation of the massif is related to the weakening process and can result from the velocity pattern produced by erosionalrheological coupling. As a result, distinctive thermal/mechanical regions develop within the crust in response to these river-influenced velocity patterns and these regions impose a characteristic signature on material advecting through. The signal is one in which the region of highest topography is bracketed by two high-strain zones between which concentrated advection produces lozenges of sillimanite and dry melt stability approximately 20 kilometers beneath the summit. Above these lozenges is a thermal/mechanical boundary layer containing an active hydrothermal system driven by steep thermal, topographic and mechanical gradients. These thermal mechanical regions are fixed with respect to a crustal reference frame. Passage of rock beneath and through these regions under these conditions produces the distinctive petrology and structure of mantled gneiss domes and is recorded within the moving petrological reference frame. Such erosional-rheological coupling can explain the occurrence of some high-grade gneiss domes in ancient collisional belts as well as the presence of active metamorphic massifs at both ends of the Himalayan orogen.
منابع مشابه
Neotectonics and glacial deformation in the Karakoram Mountains and Nanga Parbat Himalaya
Owen, L.A. 1989. Neotectonics and deformation in the Karakoram Mountains and Nanga Parbat Himalaya. In: N.-A. Momer and J. Adams (Editors), Paleoseismicity and Neotectonics. Tectonophysics, 163: 227-265. The Karakoram Mountains and the Nanga Parbat Himalaya are one of the most rapidly rising mountain areas in the world with uplift rates in the order of 2 mm/yr. Large-scale regional warping is t...
متن کاملGeochronologic Constraints on the Tectonic Evolution and Exhumation of Nanga Parbat, Western Himalaya Syntaxis, Revisited
We examine the timing of deformation and exhumation of the Nanga Parbat-Haramosh massif in the western syntaxis of the Himalaya. This study presents geochronologic and thermochronologic data obtained from basement, shear zone, and intrusive units within the massif to reveal the Cenozoic tectonic evolution of the massif and to document the extent of the Plio-Pleistocene tectonic activity. These ...
متن کاملDenudation of Small Alpine Basins , Nanga Parbat Himalaya , Pakistan
Thirty-three debris fans and five small alpine basins on the south side of the rapidly uplifting Nanga Parbat Himalaya of northern Pakistan were assessed to determine how much alpine processes contribute to the overall denudation of the massif. A high-resolution digital elevation model was used to measure the volume of the small alpine fans and a few basins in the Rupal valley. These volumetric...
متن کاملErosion , Himalayan Geodynamics , and the Geomorphology of Metamorphism
Is erosion important to the structural and petrological evolution of mountain belts? The nature of active metamorphic massifs colocated with deep gorges in the syntaxes at each end of the Himalayan range, together with the magnitude of erosional fluxes that occur in these regions, leads us to concur with suggestions that erosion plays an integral role in collisional dynamics. At multiple scales...
متن کاملTectonics of Nanga Parbat, western Himalaya: Synkinematic plutonism within the doubly vergent shear zones of a crustal-scale pop-up structure
Detailed mapping and geochronologic investigations from the eastern, southern, and western Nanga Parbat–Haramosh massif reveal two thrust-displacement shear zones that have a spatial and temporal link with granite plutonism from ca. 10 to 1 Ma. The shear zones define a crustal-scale antiformal pop-up structure, with dominant west-northwest–vergent and subordinate east-southeast–vergent thrustin...
متن کامل